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Abstract 

Calculations pertaining to nth order analyses of various solid state reaction kinetics models 
have been extended to consider iso-conversional Arrhenius (i.e. Friedman) analyses. Non- 
isothermal extent and rate of reaction data for several models, with the same kinetics parameters, 
generated over a wide heating rate range, are subjected to both Arrhenius and Friedman nth order 
analyses over the entire extent of reaction range. A necessary model correction for the Friedman 
preexponential factors is presented and discussed. Calculated extent of reaction as a function of 
temperature data at a desired heating rate is compared with the original model data and analogous 
data generated using the single heating rate Arrhenius analyses parameters. Essentially complete 
agreement is obtained despite the widely disparate values of the Arrhenius and Friedman derived 
kinetics parameters. Application of this procedure to the analysis of experimental data is discussed. 
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I. Introduct ion  

It has been demonstrated that non-isothermal degradative reaction data for all solid 
state models may be simulated with very high accuracy by the use of the nth order Ar- 

rhenius rate equation and its integral form [ 1]. Furthermore, it was shown that the kinet- 
ics parameters of the analogous equation for the actual solid state model may be obtained 
by multiplying the nth order parameters by a correction factor. The multiplicative factor 
for the activation energy (E) is specific for each model and essentially constant. Thus, 
this factor increases from ca. 0.5 and 0.3, respectively, for the Avrani models A2 and A3, 
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through ca. 1.0 for the phase boundary movement models R2 and R3, to ca. 2.1 for the 
two- and three-dimensional diffusion models D2, D3 and D4 [1]. The companion mul- 
tiplicative corrector for the pre-exponential factor (A) when expressed logarithmically, is 
essentially constant for the R2 and R3 models at ca. -0.7 and -1.3, respectively. Refer to 
Table 1 and reference [2] for description of kinetic models. On the other hand, this cor- 
recting factor varies linearly with E/RTma x at the maximum reaction rate. For example, 
for models A2 and D4, ln(A/An) equals - 5 . 0 -  0.94(E/RTmax) and -1.0 + 0.5(E/RTm~x), 
respectively. The reader is referred to the earlier publication [1] for the exact values of all 
correction factors for all seven major solid state models. When applied to experimental 
nth order analysed non-isothermal thermogravimetric data characterizing the three-stage 
degradation of calcium oxalate monohydrate, this "ratio calculation" procedure enables 
evaluation of the model reaction kinetics parameters within 99.5% of the correct values. 

The benefit of employing iso-conversional Arrhenius analysis to determine the reac- 
tion kinetics parameters has long been advocated [3,4]. For singular reactions, the energy 
of activation, determined using the iso-conversional approach, i.e. employing the Fried- 
man equation [5], is independent of both the model employed in the analysis and the ex- 
tent of reaction at which the calculation is carried out. Furthermore, the activation energy 
and pre-exponential factor calculated over the entire extent of the reaction are related 
through a compensation relationship of the form In A = kl 'E + k 2, where kl and k 2 are 
constants. The utility of the iso-conversional approach in assessing the possibility of the 
occurrence of multiple reactions has been emphasized in a series of papers [6]. Earlier, 
the danger of relying solely on single heating rate data to determine the correct reaction 
kinetics parameters had been discussed by Elder [3]. 

It is the purpose of this paper to, in a sense, refute this caveat. It is demonstrated 
how one can, for singular model reactions, using iso-conversionally determined para- 
meters, generate extent of reaction data identical with that descriptive of the original 
model, thereby achieving a reconciliation of two apparently different sets of kinetics pa- 
rameters. 

2. Theoretical principles 

The rate and extent of a singular solid state reaction is given by the differential Ar- 
rhenius equation and its integral form [7] at a specific heating rate, ft. 

da / dt = A exp( -E  / RT) f (a )  (1) 

g(a) = (AE / flR)p o (E / RT) (2) 

wheref(a) = function of extent of reaction, 

g(a) = S2da I F(a) 

and po(E/RT) is the exponential temperature integral [7]. The integral g(a) may be ex- 
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T a b l e  1 

S o l i d  s t a t e  r e a c t i o n  k i n e t i c s  m o d e l  p a r a m e t e r s , r i o 0 ,  g(a) 

43 

M o d e l  [21 f ( a )  [71 g(ct) [81 

Fn a (1 - a)  n [1 - (1 - cO l - n] /(1 - n )  

An b n(1 - a ) [ - l n ( 1  - a ) ]  1 - 1In [ - I n ( 1  - a ) ]  l/n 

Rn b n(1 - a )  1 - lln 1 - (1 - ct) lln 

D 2  - 1 / l n ( 1  - a )  (1 - a )  In((1 - a )  + a 

D 3  [ (3 /2) (1  - a )2 /3 ] / [1  - (1 - a )  1/3] [1 - ( 1  - a ) l / 3 ]  2 

D 4  [ (3 /2 ) (1  - a)l/3]l[l - (1 - a )  1/3] 1 - ( 2 a / 3 )  - (1 - a )  2/3 

a n t h  o r d e r .  

b n = 2 o r 3 .  

pressed solely in terms of the extent of reaction, a [8]. Table 1 lists the f(a) and g(a) 
functions for various solid state models [2]. Eq. (1) may be expressed in terms of the cor- 
rect model f(a) function, or the equivalent nth order function. Denoting nth order pa- 
rameters with the subscript n, one has two equivalent forms of the iso-conversional 
(Friedman [5]) equation. 

ln[(da / dt)a / f (a)] = ln A -  E / RT a (3a) 

ln[(do: / dt)a / fn (a)] '= In A. - E.  / RT a (3b) 

Since, as has been indicated and will be demonstrated, E = En, at any a, the correct pre- 
exponential factor is given by 

lnA = lnA~ +ln[ f~(a) / f (a ) ]  (4) 

The temperature at any particular value of a is given by 

T a = E / R p o l ( E / R T a )  (5) 

where po-I(E/RT) is the inverse po(E/RT) function. The third order polynomial general- 
ized form of the Doyle equation, introduced in 1984 [7], is used to calculate the inverse 
function, po(E/RTa) is obtained by equating the right-hand side of Eq. (2) with the appro- 
priate g(a) function given in Table 1. 

3. Simulated solid state reactions 

The extent and rate of reaction data as a function of temperature have been generated 
at various heating rates for the seven solid state models indicated in Table 1 with, in each 
case, E = 220 kJ mo1-1 and A = 1.25 × 1015 min -1. For each model, the entire data set 
was subjected to nth order single heating rate analysis, multi-heating rate peak (gener 
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alized Kissinger) and iso-conversional (Friedman) analyses, as has been described [3]. 
The Arrhenius, Kissinger and Friedman kinetics parameters were then employed to gen- 
erate the temperatures, Ta, for various extents of  reaction, a ,  using Eq. (5). The nth order 
iso-conversional  pre-exponential  factors were corrected for the particular model  accord- 
ing to Eq. (4). 

Table 2 shows part of  a typical set of  such data for the three-dimensional random nu- 
cleation model, A3, at I°C min -1, for the range 0.99 < 1 - a  < 0.75. As can be seen, the 
iso-conversional  activation energies are essentially constant. Over the entire a- range,  
E F = 219.93 _ 0.81 kJ mo1-1. This mean value is in excellent agreement with that derived 
from Kissinger "peak" analyses, E K = 219.85 kJ mo1-1. Even though both were generated 
using the nth order model, they agree with the activation energy of  the original solid state 
model. Using the model-corrected iso-conversional pre-exponential factor one finds over 
the entire a- range,  In AF = 0.1630EF - 1.0625 (r 2 = 0.9989). As can be seen, the tempera- 
tures computed using the Kissinger kinetics parameters lag the Arrhenius analysis values 
considerably.  This lag is lessened when the temperatures are computed using the nth or- 
der iso-conversional parameters. However as indicated, the temperature difference can be 
as much as 20°C. On the other hand, when the model-corrected iso-conversional pre- 
exponential  factors are used with the essentially constant Friedman activation energy, the 
lag is reduced to an average value <0.5°C. 

Figs. 1-3 show for comparison the non-isothermal 1 - a  versus T curves for three 
solid state models: two-dimensional random nucleation, A2; three-dimensional phase 
boundary movement,  R3; and the Ginst l ing-Brounshtein model  of three-dimensional 
diffusion, D4, with E = 220 kJ mo1-1 and A = 1.25 x 1015 min -1, at I°C min -1. Up to 
10% deviation from linearity was allowed in computing the equivalent nth order Ar-  
rhenius parameters,  which are as indicated. The circles indicate the T a values at 
A a  = 0.05 increments over the range, 0.05 < a < 0.95, computed using these parameters. 
As previously indicated [1], the agreement with the actual model values is excellent. 

1.0- 

0.8- 

O.fi- 

0.4- 

0.2- 

0 
430 440 450 

Temperature (°C) 

Fig. 1. Model A2: E= 220 kJ mo1-1, A = 1.25 x 1015 min -1,/5 = I°C rain -1. nth order analyses: n = 0.987, 
E n = 449.7 kJ mo1-1, A n = 2.84 x 1032 rain -1. 
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Fig. 2. Model R3: E = 220 kJ mo1-1, A = 1.25 × 1015 min -1, fl = 1°C min -1. nth order analyses: n = 0.669, 
E n = 220.2 kJ mo1-1, A n = 3.87 × 1015 min -1. 

Curves  K and F were  generated using the Kissinger  and Fr iedman parameters  g iven  in 

Table  3. The  uncorrected iso-convers ional  pre-exponent ia l  factors were  used in generat-  

ing curve  F. These  factors do not  correlate  with the constant  act ivat ion energy  values. On  

the o ther  hand, the mode l -cor rec ted  pre-exponent ia l  factors exhibi t  a compensa t ion  rela- 

t ionship with the i so-convers ional  act ivation energies,  E F, as shown in Table  3. The  

crosses on the actual mode l  1 - a  versus T curves indicate the T~ values  computed  using 

the mode l -cor rec ted  pre-exponent ia l  factors. The  effect  o f  the correct ion is dramatic ,  

part icularly in the case o f  the A2 and D4 models .  In the case o f  mode l  R3, the actual and 

the K and F curves  are so close as to be wel l -n igh indist inguishable.  Ana logous  calcula-  
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T e m p e r a t u r e  (°C) 

Fig. 3. Model D4: E = 220 kJ mo1-1, A = 1.25 × 1015 min -1, fl = I°C min -1. nth order analyses: n = 0.436, 
E n = 105.5 kJ moi -1, A n = 5.99 × 106 rain -1. 
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Table 3 

Kissinger and Friedman reaction nth order kinetics parameters 

47 

Model [2] EK/(kJ mo1-1) AK/min -1 E'F/(kJ tool -1) In AF t~ = kl'E F + k 2 

kl k2 r 2 

A2 219.94 1.189 × 1015 219.71 _+ 0.54 0.1604 -0.4968 0.9956 
R3 220.05 3.781 × 1015 219.87 _ 0.63 0.1664 -I.8165 0.9986 
D4 220.39 12.622 x 1015 220.24 -+ 1.21 0.1721 -3.071 0.9952 

aModel-corrected pre-exponential factors. 

tions on the remaining single solid state reaction systems listed in Table 1 have yielded 
agreements similar to those described above. 

3. Conclusions 

Despite the large disparities in the magnitude of the actual solid state model kinetics 
parameters compared with the nth order equivalent values, extents of reaction as a func- 
tion of temperature data at any heating rate, computed using the nth order Arrhenius 
analysis parameters, are identical with those calculated using iso-conversionally deter- 
mined kinetics parameters, with the appropriately model-corrected pre-exponential fac- 
tors. Since the iso-conversionally determined parameter values are the correct ones, nth 
order Arrhenius analysis of single heating rate data should be sufficient to postulate the 
correct mechanism and determine, using the "ratio calculation" procedure [ 1 ], the ener- 
getic and entropic system parameters, i.e. solve the inverse kinetics problem [9]. Super- 
ficially, one can conclude that multiple heating rate, non-isothermal experiments are un- 
necessary. For single reaction system model studies, this is true. However, in the case of 
real systems, one must clearly establish that a single reaction is occurring. As has been 
shown for a number of multiple mutually independent model systems [6], when treated 
empirically as nth order processes, the order is a logarithmic function of the heating rate. 
Furthermore, it has been clearly demonstrated that the iso-conversional activation ener- 
gies for such systems vary considerably with extent of reaction. The character of the 
variation is highly dependent upon the number of single members of the multiple set, and 
the magnitudes of their individual kinetics parameters. In order to ratify the singularity of 
a real system undergoing any form of thermochemical reaction, it is absolutely necessary 
that multiple heating rate thermoanalytical experiments be carried out. 

As a case in point, the thermal degradation of calcium oxalate monohydrate was re- 
cently examined at various heating rates [1]. nth order Arrhenius analyses at each heating 
rate together with peak analysis of the entire data set strongly indicated the D4, R3 and 
D4 models for the three stages, dehydration and sequential loss of carbon monoxide and 
carbon dioxide. Despite the constant value of n over a 100-fold change in heating rate for 
each of these steps, indicating an apparent single reaction, iso-conversional analysis has 
shown that the activation energy is not constant but in the range 0.15 < a < 0.95 EF varies 
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linearly with extent of  reaction. In the case of  the second stage, postulated as conforming 
to the contracting volume mechanism, some success was achieved. Over the range 
0.15 < a  < 0.95, the Friedman iso-conversional activation energy follows the relation- 
ship: E F (kJ mol -l) = 260.2 + 10.5a (r 2 = 0.928). This slight increase with extent of  the 
thermal degradation of  the anhydrous calcium oxalate may be due to the fact that, in re- 
ality, the particles will not be truly spherical, as demanded by theory, and are of  unknown 
size distribution. However, the constancy of  the order of  reaction [1], i.e. 0.66 _+ 0.01, 
together with the fact that the Friedman parameters follow the compensation relationship 
In(AF) = 0.186E F - 8.114 (r 2 = 0.999) strengthens the postulation of  essentially a singular 
R3 reaction. In the case of  the first, dehydration stage, the Friedman activation energy 
decreases sharply in the early stages of  the reaction but then decreases more slowly dur- 
ing the remainder of  the dehydration. Qualitatively, the EF - a variation is analogous to 
that described by Masuda et al. [10]. Although a compensation In A F - E F  is obtained, 
indicative of a single reaction, the order of  reaction does increase slightly with heating 
rate [1]. In the final stage, the degradation of  calcium carbonate, the iso-conversional 
activation energy exhibits analogous behavior with increasing extent of  reaction as the 
dehydration. Again, a compensation In A F - E F relationship is observed, and the order of  
the reaction remains constant at 0.42 [1]. For both the first and third stages, when the 
model D4-corrected nth order iso-conversional data are used to calculate Ta as a function 
of  the extent of  reaction, according to Eq. (5), there are significant deviations from the 
original experimental data. Calculations have shown that the monitored EF - a variations 
do not conform to a multiple model set of  mutually independent reactions. It is consid- 
ered that a more probable explanation lies in a competition between two mechanisms, the 
contributions of  both to the overall reaction varying with the extent of the reaction, as 
originally proposed by Masuda et al. [10] for the first dehydration stage. Model calcula- 
tions, aimed at investigating changing mechanisms with reaction extent, are in progress. 
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